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An exact general solution to the jet flow (in particular, of incompressible fluid)past a 
wedge (and flat plate) has been obtained in this paper for the case when the stagnation point 
is at the apex of the wedge. The stream function and the relations establishing the connec- 
tion between the wedge parameters, flow, and the wedge location have been obtained. As an 
example, the general solution is used for solving the flow past a wedge at the surface of an 
unbounded flow which is the generalization of one of the problems posed by N. E. Zhuko~skii. 
It is shown that the general solution contains solutions for all the various earlier partic- 
ular cases of the problem. 

I. The flow past a wedge (l~ and Z2 are the lengths of the side walls, 2~ is the wedge 
angle) by a subsonic fluid jet with velocity Vo, width H, and mass flow rate Q, at an angle 

to the wedge axis (x axis) is split at the stagnation point 0 located at the wedge apex 
into two jets of width HI and H2, with mass flow rates QI and Q=, respectively, at angles 

and y to the wedge axis (Fig. i). This classical problem was first studied for an in- 
compressible flow by Kotel'nikov [I], who gave the solution to the particular case QI = Q2. 
In [2] , Zhukovskii indicated that his method gives a solution even when QI ~ Q2, though the 
solution itself was not given. The general solution to the problem (Q: ~ Q=) for compressi- 
ble subsonic flow is given in [3] which also contains solution to the incompressible flow 
as a particular case. In [4] the solution for a liquid jet is mentioned but the final re- 
sults are not given. In the second edition [5] only reference to [i, 2] is given. Later, 
solutions (with errors) for gas flow are given in [6, 7]. Since these errors play havoc 
with solution to the classical problem, there is sense in returning to the general solution 
[3], all the more because there is a need for a significant improvement. This solution has 
the form 
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Here $ is the stream function; ~, O, Chaplygin variables [5, 8, and 9]; RI and R=, pressures 
at the wedge side walls; R, wedge resistance; To, value of T at the surface; po = !, stagna- 
tion density; B = I/(X -- i), X, polytropic index. 

The correctness of (i.I) and (1.2) can be ascertained directly by contour integration 
around the contour that confines the flow in the hodograph plane (Fig, 2). Equations (1.3), 
(1.4), and (1.6) can be obtained by integrating the transformation equations from the hodo- 
graph plane to the physical plane along the wedge walls or along lines of constant velocity. 

2. The second equation in (1.5) has been derived in [3] only for q~ i (transformed 
wedge and flat plate). We show that it satisfies all q. 

In an infinitely small neighborhood of the point O from (l.l),we have 

Znq;'-j ~ Sill I?0', (2.1) 

where n is the number of the first nonzero term in the series (I.i). For incompressible 
fluid 

q~-a,,(c%)"q/esinnO'-: a,~(}/|'o)"qsint~O'." 
(2 .9~  

In  go ing  around the  p o i n t  0 a long  an i n f i n i t e l y  smai i  a rc  0~0= • the  hodograph  p l ane  
(T, 0) ( see  F ig ,  2) the  change in  argument  e q u a l s  2~, whereas  f o r  the  same p a t h  in  the  r e g i o n  
of  complex p o t e n t i a l  W = ~ +  i~ the  change in  argument  i s  2~. Hence i t  f o l l o w s  [5] t h a t  in  
the i n f i n i t e l y  sma l l  ne ighbo rhood  of the  p o i n t  0 

i V 0 \ ~ ' 2  
W,-v eonst, i - ~ 0 e i )  . ( 2 . 3 )  

A comparison of (2.2) and (2.3) gives n = 2. The same result also follows directly 
from (2,1). Actually, while going along O~O= the line $ = 0 (see Fig. 2) must be crossed, 
i.e., sin ne' should become zero only once in the interval from 0' = 0 (0 = --q2) to O' = 

(e= ~/2). It is possible to observe that this is attainable only for n = 2. 

Thus, series (I.I) begins from the second term and a~ = 0, and for any q the following 
equality must be satisfied 

c o s ~ t ' -  K2cos y ' - - K j  cos 6 '= -  0 

and summation in  ( 1 . 1 ) ,  ( 1 . 3 ) ,  and (1 .4)  s t a r t s  from n = 2. 
equivalent to the second equation in (1.5) which is satisfied, thus, for all q. 
was not noticed for nearly a quarter of a century [3, 6, and 7]. 

From (1.5) we find 

K~ .... (sinq~L--sinw)/~inq8 --.sin q?), 

K~==: ( s inq t t - -  sinqS)/(sin qy ...... sinq6). 

(2.4) 

Equation (2.4) is, however, 
This fact 

( 2 . 5 )  
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Substituting (2.5) in (1.3) and (1.4), we have two equations for the unknown parameters 
y and 6. After obtaining y and 6 from (2.5), we find K: and Ka, and thereby from (1.2), 
(i.I) the stream function ~ is determined and from it all other flow parameters are obtained. 
Thus, (1.1)-(1.5) is the complete solution. It is valid for all q, including flat plate 
(q = i). Here, when n = i, in order to avoid indeterminacy of the type 0/0 in (1.3) and 
(1.4) it is necessary to switch over to the limit q § i. This can be easily carried out 
though, in order to avoid writing two parallel series of equations, we shall sum up from 
n = i, keeping in view the need for the limiting approach mentioned above for the flat plate; 
for the wedge, in view of (2.4) this does not lead to any changes, since al = 0. 

If B = O, Xnq/~(T o) = I, in (1.1)-(1.6) 

then the solution is obtained for the incompressible flow problem which was also not com- 
pletely solved earlier. Here, for stream function ~ the series is summed up in terms of 
elementary functions, and the sum of the series in (1.3) and (1.4) can be expressed in terms 
of proper integrals, which in the case where q is a rational number (i.e., when the wedge 
angle can be measured in terms of ~) can also be expressed in terms of elementary functions 
[10,  ii]. 

3. S i n c e  r e l a t i o n s  ( 1 . 1 ) - ( 1 . 5 )  c o m p l e t e l y  d e t e r m i n e  t h e  f l o w ,  t h e y  make i t  p o s s i b l e  t o  
f i n d  any  f l o w  p a r a m e t e r ,  i n  p a r t i c u l a r ,  t h e  d e p t h  o f  i m m e r s i o n  h = MK of  t h e  wedge  v e r t e x  
in the jet flow with respect to its upper level at infinity (see Fig. i). We shall give 
this solution since errors were committed in [6, 7] while deriving similar relations. 

It is sufficient to derive the main relation for L = OM since h = L cos ~. Let AM be 
the asymptote of the upper surface in the jet and its equation has the form 

y =~ tg px + L, 

where L is the coordinate of the point of intersection of the asymptote with the x axis. 

At infinitely far sections of the jets 

l ira (XFC - -  XAB) = H1 sin '5, lira (YA~ - -  YFC) = H !  cos 8, 
0~8 0--,5 

l im (gAB - -  tg ,ttXAB) := L. 
0->Jx 

(3. I) 

For free surfaces of the jets we have [5, 8] 
8 

sin0 2 T ~  (i ~o) -~  ( 04 ) Y = g o +  o'-V ~=~o d0' 
0 o 

0 

x = x0 + ~=~odO, 
0 o 

where  x o ,  yr a r e  t h e  c o o r d i n a t e s  o f  t h e  p o i n t  D on t h e  j e t ;  9o i s  t h e  a n g l e  o f  i n c l i n a t i o n  
of the velocity at this point. 

Using the expression for stream function (i.i), (1.2), and (3.2) we write equations for 
the surface AB and FC, representing the point D for the jet AB by the point N(0, Yl) at angle 
eo = 9t and for the jet FC by the point F(ll cosa, It sin ~) at 8o = ~. The relations ob- 
tained are substituted in (3.1) from which the combination L -- HI cos 6 -- tan ~Ha and ~ is 
obtained. We have 

12 o 
[L cos ~t 11 sin (~z -- a) __ K1 cos (8 - -  }x) ~- (cos n F ---K,, co,~ ny '  - 

~ L ~  1t 

- -  K 1 Cos n6') Xnq/2 ('Co) .! sin (~ - -  0) sin nO'dO. ( 3 . 3 )  
~t 

Computing the integrals and using the expression (1.3) for Ix, we find the depth h: 
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(3.4) 

The presence of three equations (1.3), (1.4), and (3.4) for two unknown parameters y 
and ~ shows that for the given wedge geometry Zz, 12, and 2a, flow parmmeters Vo, H and the 
flow structure (see Fig. i), the wedge orientation is not arbitrary, but only for a given 
orientation of the wedge axis n the depth of immersion h should be completely determined 
and vice versa. 

If, however, we specify Kx and K2, then the angle p and deptb h are determined from 
(1.3)-(1.5), (3.4). 

Consequently, the solution [i] with the condition 

KI + K~ = I'2 (3.5) 

determines the flow, though it is possible that it is a special case. 

The flat plate is a special case. For it the unkno~s are gl, 12, 5, and y which are 
determined by Eqs. (1.3), (1.4), and (3.4) and ~z + ~= = 2~ (2~ is the plate length), here h 
and p are independent. 

In deriving an analog of Eq. (3.4), incorrect relations were obtained in [6] which were 
again found in a somewhat different form in [7] (Eqs. (].7.13) of that paper). Analyzing 
these equations, the author of [7] maintains that in any case QI = Q2, i+e., (3.5) is always 
satisfied. 

This conclusion is wrong since it is made from incorrect equation (17.13) in deriving 
which the author [7] ignored that the point A is a singular point of the flow and the solu- 
tion used by him for each concrete T is a Fourier series for which Dirichlet theorem [12] 
is valid. 

4. As an example, we use the more general solution to the flow past a wedge located 
at the surface of an unbounded gas flow when the free stream is parallel to the wedRe axis 
(p = 0) (Fig. 3). 

We shall start from the solution to (1.1)-(1.6) for the jet with finite flux Q. For 
= 0, from (1.5) 

Q2,/Qt ~ -sin q&/sin q~. (4. !) 

Taking into account (4.1), we find 

2Q1 ~ ! n~ cos-!) F ..o~.,,y Z.,72ta. ) 
= ,-~'..a,~-,T CoS~---COSn6'--siJig~ .... :iuq7 I ZGT"~oF ~h~''i)'; (4.2) 

12.=;.~ 

:-)+ i + ! - -  c o s  ~. - -  . ' i ,_ ~i. ....... = - : - ; -  ' , 
i, + t.~ = vo(~-_.+o), ~ i,~j,+~ .~,,",": j 
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-]- ~ �9 " -  " , 3 - - ~ J ~  . . . . . . . . .  
n~__l 4/~=,7 a .. ~ ,-in q}' j 

(4.3) 

H=Q~Vo[ l_cos6_s inq(~  t-._cosv]smq;, (4.4) 

Q= = ~ corresponds to this problem (Fig. 3). As seen from (4.1), as Q2 + ~ (Q~ = const) 
y should go to zero. Allowing this limiting case in (4.2)-(4.4) we find for this problem 

~P == -57 ~ -~C [c~ - -- cos n 6 ' -  sin qSsm ,-5- ~ t 

l~ ' L, = 

rL=~ 

QI 
v 0 (1 --- 'ro)~ [ 

Zw.'.~ (~) (4.5) sin i~0'; 
z ~ .  2 (*0) 

t - -cos6  t ~ (--t)n-J4nq(i__COS2nq6)X.~.(To)] ; (4.6) 

R = Q1V0(i -- cos 6). ( 4 . 7 )  

L e t  us a p p l y  t h e  g e n e r a l  s o l u t i o n  to  ( 1 . 1 ) - ( 1 . 6 )  f o r  t h e  c a s e  o f  s y m m e t r i c  f l o w  p a s t  a wedge 
(V = 0 ,  "~ = - - g ,  ;~ = Z2 = ; ,  K~ = K2 = 1 / 2 ) .  We have  

Q ~ 4 Z~ (T) 
~I" = T ,~ (1 -- cos 2nq6) Z,,q (~o) si;l 21~q0; (4.8) 

2], - P0- (1 Ot %-0)~ ['--COS~_____Siil rZ C Z t ~ ( - - l ) n - - l ' ~ l ) q ( ' ( ' O s  ; "  4112q ~ --- i -- "" " ' ( 4 . 9 )  
7~:=1 .| 

(4.10) 
t~ - Q V o ( !  - c o s  6). 

These equations for q = i (flat plate) are obtained in [8]. 

A comparison of (4.6), (4.7) with (4.9), (4.10) leads to the result: The drag of the 
wedge placed at the surface of unbounded flow parallel to the wedge axis (~ = 0) and the 
jet impinging across the wedge with a flux Q: is the same as the symmetric flow past an equal 
sided wedge by a fluid jet with the same flux QI, if the sum of the side wall lengths of 

these wedges is identical (~ + 5= = 2Z). 

This result appears even more clearly for the plate: infinite flow with velocity Vo 
impinging along the edges of a flat plate placed normal to it and jet impingement through 
it with a flux Q~ causes the same pressure on it as the jet impinging on the center of the 

plate at a velocity Vo and flux Q~. 

This interesting result was established for incompressible flow by N. E. Zhukovskii 
who studied the flat plate problem. Relations (4.9) and (4.10) for q = i also lead to the 
equations [2] even for an incompressible flow. 

The chosen problem for which K~ = 0, K2 = i is a good contradictory example to estab- 
lish the complete satisfaction of (3.5). 

5. Putting 6 = ~ in the general solution (1.1)-(1.6) we get 11 = ~ and obtain the solu- 
tion to the flow past a half plane with a break at the point O. In addition, putting a = 
7/2 here we get the solution for the flow past a half plane without the break [13]. 

If in the general solution 6 = ~, y = --a, we get 11 = ~, Z==~ and come to the solu- 
tion for the flow past a plane wall with a bend; for ~ = ~/2, we get the solution for the 
flow past the plane wall without inflection [14, 15]. 

It is also possible to obtain the solution for the flow past a wedge by an unbounded 
fluid using the limiting approach (Q + =). This is done in [3] for the flat plate case, 

Thus, the general solution (1.1)-(1.6), (3.4) covers all particular cases of the pro- 

blem. 
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EXPERIMENTAL STUDY OF THE INTERACTION OF A PAIR OF 

HYPERSONIC JETS 

V. I. Ermolov, J.-C. Langran,* 
A. K. Rebrov, and G. A. Khramov 

UDC 533.6.011.8 

Jet interaction in certain types of vacuum pumps appreciably affects the evscuating 
capacity and the limiting vacuum. However, there have been no goal-oriented studies on this 
phenomenon applicable to vacuum pumps [i]. Jet interaction studies [2-4] carried out for 
fairly high Reynolds numbers characterizing the viscous effects, and small values of nozzle 
spacing do not relate directly to the operating conditions of vacuum pumps. The interaction 
of a pair of adjacent jets is similar to the interaction of a single jet with a surface paral- 
lel to the jet axis, without friction. The formulation of such studies is of interest in 
solving problems associated with the effects of jet strength on the surrounding elements un- 
der the conditions of vacuum. The present paper is devoted to the experimental study of the 
influence of viscous effects on the density distribution in the symmetry plane of a pair of 
parallel, strongly underexpanded hypersonic jets under conditions similar to vacuum pumps. 

The flow structure in the interaction region of jets issuing into a heated space is 
determined by Mach number M at the nozzle section, ratio of specific heats y, stagnation 
parameters of the fluid jet po and To, pressure in the surrounding medium Pk' outside tem- 
perature Tk, Reynolds number Re, based on the parameters at the throat section, and the 
geometric parameters: h, the distance between the nozzles, d,, the throat diameter. In or- 
der to determine the location of the geometric surfaces it is sufficient to ~se the rat:io of 

*France. 
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